意图发现是NLP的一项基本任务,它与各种工业应用越来越相关(Quarteroni 2018)。主要的挑战在于需要从投入性话语中识别出新颖的范围。在此,我们提出了Z-Bert-A,这是一种依赖变压器结构的两阶段方法(Vaswani等人,2017; Devlin等人,2018年),用适配器进行了微调(Pfeiffer等,2020),,),等等。最初接受了自然语言推断(NLI)的培训,后来在零射击设置中申请了未知的内部分类。在我们的评估中,我们首先在已知类别的自适应微调后分析模型的质量。其次,我们将其性能铸造意图分类评估为NLI任务。最后,我们在看不见的类别上测试了模型的零射击性能,以表明Z-Bert-A可以通过产生与地面真实者的语义相似(即使不是平等)的意图,如何有效地执行周期发现。我们的实验表明,Z-Bert-A在两个零射击设置中的表现如何超过各种基线:已知意图分类和看不见的意图发现。拟议的管道具有广泛应用于各种客户服务应用程序的潜力。它可以使用轻巧的模型来实现自动化动态分流,该模型与大型语言模型不同,可以轻松地在各种业务场景中进行部署和缩放。尤其是在考虑具有有限的硬件可用性和性能的设置时,必须进行原始或资源云部署低的设置。 Z-Bert-A可以从单一话语中预测新颖的意图,代表了一种创新的意图发现方法,从而使在线一代的新颖意图能够。该管道可作为可安装的Python软件包获得以下链接:https://github.com/gt4sd/zberta。
translated by 谷歌翻译
随着各种科学领域中数据的越来越多,生成模型在科学方法的每个步骤中都具有巨大的潜力来加速科学发现。他们最有价值的应用也许在于传统上提出假设最慢,最具挑战性的步骤。现在,正在从大量数据中学到强大的表示形式,以产生新的假设,这对从材料设计到药物发现的科学发现应用产生了重大影响。 GT4SD(https://github.com/gt4sd/gt4sd-core)是一个可扩展的开放源库,使科学家,开发人员和研究人员能够培训和使用科学发现中假设生成的最先进的生成模型。 GT4SD支持跨材料科学和药物发现的各种生成模型的用途,包括基于与目标蛋白,OMIC剖面,脚手架距离,结合能等性质的分子发现和设计。
translated by 谷歌翻译
Automatic differentiation (AD) is a technique for computing the derivative of a function represented by a program. This technique is considered as the de-facto standard for computing the differentiation in many machine learning and optimisation software tools. Despite the practicality of this technique, the performance of the differentiated programs, especially for functional languages and in the presence of vectors, is suboptimal. We present an AD system for a higher-order functional array-processing language. The core functional language underlying this system simultaneously supports both source-to-source forward-mode AD and global optimisations such as loop transformations. In combination, gradient computation with forward-mode AD can be as efficient as reverse mode, and the Jacobian matrices required for numerical algorithms such as Gauss-Newton and Levenberg-Marquardt can be efficiently computed.
translated by 谷歌翻译
A methodology is proposed, which addresses the caveat that line-of-sight emission spectroscopy presents in that it cannot provide spatially resolved temperature measurements in nonhomogeneous temperature fields. The aim of this research is to explore the use of data-driven models in measuring temperature distributions in a spatially resolved manner using emission spectroscopy data. Two categories of data-driven methods are analyzed: (i) Feature engineering and classical machine learning algorithms, and (ii) end-to-end convolutional neural networks (CNN). In total, combinations of fifteen feature groups and fifteen classical machine learning models, and eleven CNN models are considered and their performances explored. The results indicate that the combination of feature engineering and machine learning provides better performance than the direct use of CNN. Notably, feature engineering which is comprised of physics-guided transformation, signal representation-based feature extraction and Principal Component Analysis is found to be the most effective. Moreover, it is shown that when using the extracted features, the ensemble-based, light blender learning model offers the best performance with RMSE, RE, RRMSE and R values of 64.3, 0.017, 0.025 and 0.994, respectively. The proposed method, based on feature engineering and the light blender model, is capable of measuring nonuniform temperature distributions from low-resolution spectra, even when the species concentration distribution in the gas mixtures is unknown.
translated by 谷歌翻译
The combination of artist-curated scans, and deep implicit functions (IF), is enabling the creation of detailed, clothed, 3D humans from images. However, existing methods are far from perfect. IF-based methods recover free-form geometry but produce disembodied limbs or degenerate shapes for unseen poses or clothes. To increase robustness for these cases, existing work uses an explicit parametric body model to constrain surface reconstruction, but this limits the recovery of free-form surfaces such as loose clothing that deviates from the body. What we want is a method that combines the best properties of implicit and explicit methods. To this end, we make two key observations: (1) current networks are better at inferring detailed 2D maps than full-3D surfaces, and (2) a parametric model can be seen as a "canvas" for stitching together detailed surface patches. ECON infers high-fidelity 3D humans even in loose clothes and challenging poses, while having realistic faces and fingers. This goes beyond previous methods. Quantitative, evaluation of the CAPE and Renderpeople datasets shows that ECON is more accurate than the state of the art. Perceptual studies also show that ECON's perceived realism is better by a large margin. Code and models are available for research purposes at https://xiuyuliang.cn/econ
translated by 谷歌翻译
As a result of the ever increasing complexity of configuring and fine-tuning machine learning models, the field of automated machine learning (AutoML) has emerged over the past decade. However, software implementations like Auto-WEKA and Auto-sklearn typically focus on classical machine learning (ML) tasks such as classification and regression. Our work can be seen as the first attempt at offering a single AutoML framework for most problem settings that fall under the umbrella of multi-target prediction, which includes popular ML settings such as multi-label classification, multivariate regression, multi-task learning, dyadic prediction, matrix completion, and zero-shot learning. Automated problem selection and model configuration are achieved by extending DeepMTP, a general deep learning framework for MTP problem settings, with popular hyperparameter optimization (HPO) methods. Our extensive benchmarking across different datasets and MTP problem settings identifies cases where specific HPO methods outperform others.
translated by 谷歌翻译
Climate change is expected to aggravate wildfire activity through the exacerbation of fire weather. Improving our capabilities to anticipate wildfires on a global scale is of uttermost importance for mitigating their negative effects. In this work, we create a global fire dataset and demonstrate a prototype for predicting the presence of global burned areas on a sub-seasonal scale with the use of segmentation deep learning models. Particularly, we present an open-access global analysis-ready datacube, which contains a variety of variables related to the seasonal and sub-seasonal fire drivers (climate, vegetation, oceanic indices, human-related variables), as well as the historical burned areas and wildfire emissions for 2001-2021. We train a deep learning model, which treats global wildfire forecasting as an image segmentation task and skillfully predicts the presence of burned areas 8, 16, 32 and 64 days ahead of time. Our work motivates the use of deep learning for global burned area forecasting and paves the way towards improved anticipation of global wildfire patterns.
translated by 谷歌翻译
The current success of machine learning on image-based combustion monitoring is based on massive data, which is costly even impossible for industrial applications. To address this conflict, we introduce few-shot learning in order to achieve combustion monitoring and classification for the first time. Two algorithms, Siamese Network coupled with k Nearest Neighbors (SN-kNN) and Prototypical Network (PN), were tested. Rather than utilizing solely visible images as discussed in previous studies, we also used Infrared (IR) images. We analyzed the training process, test performance and inference speed of two algorithms on both image formats, and also used t-SNE to visualize learned features. The results demonstrated that both SN-kNN and PN were capable to distinguish flame states from learning with merely 20 images per flame state. The worst performance, which was realized by PN on IR images, still possessed precision, accuracy, recall, and F1-score above 0.95. We showed that visible images demonstrated more substantial differences between classes and presented more consistent patterns inside the class, which made the training speed and model performance better compared to IR images. In contrast, the relatively low quality of IR images made it difficult for PN to extract distinguishable prototypes, which caused relatively weak performance. With the entrire training set supporting classification, SN-kNN performed well with IR images. On the other hand, benefitting from the architecture design, PN has a much faster speed in training and inference than SN-kNN. The presented work analyzed the characteristics of both algorithms and image formats for the first time, thus providing guidance for their future utilization in combustion monitoring tasks.
translated by 谷歌翻译
我们建议使用两层机器学习模型的部署来防止对抗性攻击。第一层确定数据是否被篡改,而第二层解决了域特异性问题。我们探索三组功能和三个数据集变体来训练机器学习模型。我们的结果表明,聚类算法实现了有希望的结果。特别是,我们认为通过将DBSCAN算法应用于图像和白色参考图像之间计算的结构化结构相似性指数测量方法获得了最佳结果。
translated by 谷歌翻译
图像分类的深卷卷神经网络(CNN)依次交替交替进行卷积和下采样操作,例如合并层或陷入困境的卷积,从而导致较低的分辨率特征网络越深。这些降采样操作节省了计算资源,并在下一层提供了一些翻译不变性以及更大的接收领域。但是,这样做的固有副作用是,在网络深端产生的高级特征始终以低分辨率特征图捕获。逆也是如此,因为浅层总是包含小规模的特征。在生物医学图像分析中,工程师通常负责对仅包含有限信息的非常小的图像贴片进行分类。从本质上讲,这些补丁甚至可能不包含对象,而分类取决于图像纹理中未知量表的微妙基础模式的检测。在这些情况下,每一个信息都是有价值的。因此,重要的是要提取最大数量的信息功能。在这些考虑因素的推动下,我们引入了一种新的CNN体​​系结构,该体系结构可通过利用跳过连接以及连续的收缩和特征图的扩展来保留深,中间和浅层层的多尺度特征。使用来自胰腺导管腺癌(PDAC)CT扫描的非常低分辨率斑块的数据集,我们证明我们的网络可以超越最新模型的当前状态。
translated by 谷歌翻译